WeChat Mini Program
Old Version Features

Simultaneous Polarization Transformation and Amplification of Multi-Petawatt Laser Pulses in Magnetized Plasmas

OPTICS EXPRESS(2019)

Shanghai Jiao Tong Univ

Cited 12|Views3
Abstract
With increasing laser peak power, the generation and manipulation of high-power laser pulses become a growing challenge for conventional solid-state optics due to their limited damage threshold. As a result, plasma-based optical components that can sustain extremely high fields are attracting increasing interest. Here, we propose a type of plasma waveplate based on magneto-optical birefringence under a transverse magnetic field, which can work under extremely high laser power. Importantly, this waveplate can simultaneously alter the polarization state and boost the peak laser power. It is demonstrated numerically that an initially linearly polarized laser pulse with 5 petawatt peak power can be converted into a circularly polarized pulse with a peak power higher than 10 petawatts by such a waveplate with a centimeter-scale diameter. The energy conversion efficiency of the polarization transformation is about 98%. The necessary waveplate thickness is shown to scale inversely with plasma electron density n(e) and the square of magnetic field B-0, and it is about 1 cm for n(e) = 3 x 10(20) cm(-3) and B-0 = 100 T. The proposed plasma waveplate and other plasma-based optical components can play a critical role for the effective utilization of multi-petawatt laser systems. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined