WeChat Mini Program
Old Version Features

Sensitivity Analysis of Chemical Mechanisms in the WRF-Chem Model in Reconstructing Aerosol Concentrations and Optical Properties in the Tibetan Plateau

Aerosol and Air Quality Research(2024)

Chinese Academy of Sciences (CAS)

Cited 35|Views15
Abstract
To investigate the effect of gas-phase chemical schemes and aerosol mechanisms on the reconstruction of the concentrations and optical properties of aerosols in the Tibetan Plateau (TP) and adjacent regions, two simulation experiments using the mesoscale Weather Research and Forecasting (WRF) meteorological model with the chemistry module (WRF-Chem) were performed in 2013. The RADM2 gas-phase chemical mechanism and the MADE/SORGAM aerosol scheme were selected in the first configuration, whereas the CBMZ gas and MOSAIC aerosol reaction schemes were included in the second simulation. The comparison demonstrated that chemical mechanisms play a key role in affecting the evolution of gas-phase precursors and aerosol processes. Specifically, compared with RADM2, CBMZ revealed lower O3 and higher NO2 surface concentrations, because of more efficient O3-NO titration, and higher HNO3 concentrations owing to more effective NO2 + OH reaction. SO2 could easily form particulate sulfate through cloud oxidation in RADM2. The MADE/SORGAM module presented higher surface PM2.5 and PM10 concentrations than did the MOSAIC module over the TP and in surrounding regions, because of the difference in aerosol compounds and the distribution of computed aerosol concentrations between modes and bins. The aerosol optical depth at 550 nm indicated a potential correlation with surface secondary inorganic aerosols concentrations. Higher surface sulfate and nitrate concentrations appeared to determine higher AOD values in MADE/SORGAM than in MOSAIC. Finally, the comparison with observations suggested that, the simulation performed using the CBMZ gas-phase chemical mechanism and MOSAIC aerosol module could be suitable for the efficient reconstruction of aerosols and their optical depth over the TP.
More
Translated text
Key words
Chemical schemes,Aerosol concentration,Aerosol optical properties,Tibetan Plateau
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined