WeChat Mini Program
Old Version Features

Temporal Coherence of One-Dimensional Non-Equilibrium Quantum Fluids

Physical Review B(2015)

Univ Antwerp

Cited 44|Views11
Abstract
We theoretically investigate the time dependence of the first order coherence function for a one-dimensional driven dissipative non-equilibrium condensate. Simulations on the generalized Gross-Pitaevskii equation (GGPE) show that the characteristic time scale of exponential decay agrees with the linearized Bogoliubov theory in the regime of large interaction energy. For very weak interactions, the temporal correlation deviates from the linear theory, and instead respects the dynamic scaling of the Kardar-Parisi-Zhang universality class. This nonlinear dynamics is found to be quantitatively captured by a noisy Kuramoto-Sivashinsky equation for the phase dynamics.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined