Adaptive Frameless Rendering
Rendering Techniques(2005)
Abstract
We propose an adaptive form of frameless rendering with the potential to dramatically increase rendering speed over conventional interactive rendering approaches. Without the rigid sampling patterns of framed renderers, sampling and reconstruction can adapt with very fine granularity to spatio-temporal color change. A sampler uses closed-loop feedback to guide sampling toward edges or motion in the image. Temporally deep buffers store all the samples created over a short time interval for use in reconstruction and as sampler feedback. GPU-based reconstruction responds both to sampling density and space-time color gradients. Where the displayed scene is static, spatial color change dominates and older samples are given significant weight in reconstruction, resulting in sharper and eventually antialiased images. Where the scene is dynamic, more recent samples are emphasized, resulting in less sharp but more up-to-date images. We also use sample reprojection to improve reconstruction and guide sampling toward occlusion edges, undersampled regions, and specular highlights. In simulation our frameless renderer requires an order of magnitude fewer samples than traditional rendering of similar visual quality (as measured by RMS error), while introducing overhead amounting to 15% of computation time.
MoreTranslated text
Key words
Rendering,Volume Rendering,Scene Reconstruction,Shape Representation,Texture Mapping
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined