基本信息
浏览量:523

个人简介
Dr. Oates’ recent work has explored deep neural networks for weakly supervised EEG denoising for brain-machine interfaces, human-in-the-loop deep reinforcement learning to train robots using video demonstrations, and learning declarative representations of the functionality of “found” hardware using black box methods. Ongoing efforts include novel methods for learning semantically rich compositional sentence embeddings, learning policies for monitoring and updating deployed deep learning models to maintain performance in the face of domain shifts, and unsupervised methods for learning grounded, relational policies for understanding and control of real and simulated environments.
研究兴趣
论文共 307 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
CoRR (2025)
引用0浏览0EI引用
0
0
IEEE International Conference on Acoustics, Speech, and Signal Processingpp.7080-7084, (2024)
Evaluating Education Normative Systems and Institutional Practices Improving National Education Systems After COVID-19pp.51-63, (2024)
ICCpp.740-745, (2024)
arXiv (Cornell University) (2023)
加载更多
作者统计
#Papers: 307
#Citation: 10778
H-Index: 39
G-Index: 95
Sociability: 6
Diversity: 3
Activity: 47
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn